Knowledge Level Assessment in e-Learning Systems Using Machine Learning and User Activity Analysis

نویسنده

  • Nazeeh Ghatasheh
چکیده

Electronic Learning has been one of the foremost trends in education so far. Such importance draws the attention to an important shift in the educational paradigm. Due to the complexity of the evolving paradigm, the prospective dynamics of learning require an evolution of knowledge delivery and evaluation. This research work tries to put in hand a futuristic design of an autonomous and intelligent e-Learning system. In which machine learning and user activity analysis play the role of an automatic evaluator for the knowledge level. It is important to assess the knowledge level in order to adapt content presentation and to have more realistic evaluation of online learners. Several classification algorithms are applied to predict the knowledge level of the learners and the corresponding results are reported. Furthermore, this research proposes a modern design of a dynamic learning environment that goes along the most recent trends in e-Learning. The experimental results illustrate an overall performance superiority of a support vector machine model in evaluating the knowledge levels; having 98.6% of correctly classified instances with 0.0069 mean absolute error. Keywords—Concept Maps; Multi-Class Classification; Machine Learning; Electronic Learning; Activity Analysis

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Machine Learning Approach to No-Reference Objective Video Quality Assessment for High Definition Resources

The video quality assessment must be adapted to the human visual system, which is why researchers have performed subjective viewing experiments in order to obtain the conditions of encoding of video systems to provide the best quality to the user. The objective of this study is to assess the video quality using image features extraction without using reference video. RMSE values and processing ...

متن کامل

Trust Classification in Social Networks Using Combined Machine Learning Algorithms and Fuzzy Logic

Social networks have become the main infrastructure of today’s daily activities of people during the last decade. In these networks, users interact with each other, share their interests on resources and present their opinions about these resources or spread their information. Since each user has a limited knowledge of other users and most of them are anonymous, the trust factor plays an import...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Similarity measurement for describe user images in social media

Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015